A Computing Approach Using Probabilistic Neural Networks for Instantaneous Appraisal of Rear-End Crash Risk

نویسندگان

  • Anurag Pande
  • Mohamed A. Abdel-Aty
چکیده

Computing and information technology has significantly increased the capabilities to collect, store, and analyze freeway traffic surveillance data. The most common forms of such data are collected using the underground loop detectors. In the recent past the potential of using these data for identification of crash-prone conditions has been explored. In the present work, application of probabilistic neural networks (PNN) is explored to identify conditions prone to rear-end crashes on the freeway. PNN is a neural network implementation of the well-documented Bayesian classifier. In this research the rear-end crashes observed on the Interstate-4 corridor in Orlando FL are divided into two groups based on the average traffic speeds observed around the crash location prior to the crash occurrence. Using decision tree-based classification it was observed that although these two groups of crashes have comparable frequencies, traffic conditions belonging to one of the groups (characterized by a low-speed traffic regime) are comparatively rare on the freeways. Hence, if those conditions are encountered on the freeway in real time, then conditions may be considered prone to rear-end crashes. As conditions belonging to the other group of rear-end crashes (characterized by a medium-to-high speed regime) are more commonly observed on the freeway, PNN-based classification models are developed for this group. The rear-end crashes along with a sample of randomly selected noncrash cases were used to calibrate the classifiers. The output layer of the PNN models was modified to provide a measure of crash risk, instead of the binary classification based on an arbitrary threshold. A desirable threshold on this output may be established to separate crash-prone conditions from “normal” freeway traffic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Analysis of the Relationship Between Real-Time Traffic Surveillance Data and Rear-End Crashes on Freeways

Rear-end collisions are the single most frequent type of crash on freeways. Their impact on freeway operation is also most noticeable because almost all of them occur during periods of medium to heavy demand. Preliminary explorations of average traffic speeds before a crash measured at loop detector stations surrounding the crash location showed that rear-end crashes can be placed into two mutu...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Estimation of rear-end crash potential using vehicle trajectory data.

Recent advancement in traffic surveillance systems has allowed for obtaining more detailed vehicular movement such as individual vehicle trajectory data. Understanding the characteristics of interactions between leading vehicle and following in the traffic flow stream is a backbone for designing and evaluating more sophisticated traffic and vehicle control strategies. This study proposes a meth...

متن کامل

Application of Variable Speed Limits and Ramp Metering to Improve Safety and Efficiency of Freeways

Research recently conducted at the University of Central Florida involving crashes on Interstate-4 (I-4) freeway in Orlando, Florida led to the creation of new statistical and neural networks models that are capable of determining rear-end and lane-change crash risks along the freeway in real-time. For determining the rear-end crash risk, it was found that rear-end crashes occur within one of t...

متن کامل

Application of data mining techniques for real-time crash risk assessment on freeways

Data mining is the analysis of large "observational" datasets to find unsuspected relationships that might be useful to the data owner. It typically involves analysis where objectives of the mining exercise have no bearing on the data collection strategy. Freeway traffic surveillance data collected through underground loop detectors is one such "observational" database maintained for various IT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp.-Aided Civil and Infrastruct. Engineering

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2008